If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4q^2+4q=0
a = 4; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·4·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*4}=\frac{-8}{8} =-1 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*4}=\frac{0}{8} =0 $
| -9x+21=-71 | | 3–2|0.5x+1.5|=2 | | 7(5-n)=91 | | 6(x-1)/8=3(x+3)/8 | | 12-y/3=13 | | 5+6a=-11 | | z/2+1=6-z/2 | | x-(x*0.22)=30000 | | 6x-8=2+7 | | 1=-w/5-2 | | 115-19÷8=x | | 1/3x-14x+1/12x=3 | | 1+6x=7x+4 | | (x+4)(x+2)=x-(1-x2) | | 9+b/6=14 | | X^2+30x-155=0 | | –3|2x+1.2|=–1 | | 152=-2x-4(-3x-8) | | 24-7x=-80(5x+9) | | 24-7x=-80(5x+9 | | -6(-6x+7)=210 | | x+(0.21*x)=1495.5 | | 340=10(5x+9) | | 8b+6=3+7b | | v^2=-42+13v | | 7•3.14•x=-105•3.14 | | 2.5x2+20x+40=0 | | -81+2x=-6x+103 | | 40609+(0.28y)=y | | -225=5(7x+4) | | 3•3.14+a=8•3.14 | | 1.5x+31+3x+11=180 |